Surname	Centre Number	Candidate Number
First name(s)		2

GCE A LEVEL

A410U10-1

Z22-A410U10-1

PMT

MONDAY, 13 JUNE 2022 – MORNING

CHEMISTRY – A level component 1 Physical and Inorganic Chemistry

2 hours 30 minutes

		For Ex	aminer's us	e only
ADDITIONAL MATERIALS		Question	Maximum Mark	Mark Awarded
In addition to this examination paper, you	Section A	1. to 8.	15	
vill need a:calculator;	Section B	9.	25	
 Data Booklet supplied by WJEC. 		10.	21	
INSTRUCTIONS TO CANDIDATES	11.	15		
Use black ink or black ball-point pen. Do not use gel pen or correction fluid.		12.	17	
You may use a pencil for graphs and diagram Write your name, centre number and candida	13.	27		
in the spaces at the top of this page. Section A Answer all questions.		Total	120	

Section B Answer all questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

Candidates are advised to allocate their time appropriately between **Section A (15 marks)** and **Section B (105 marks)**.

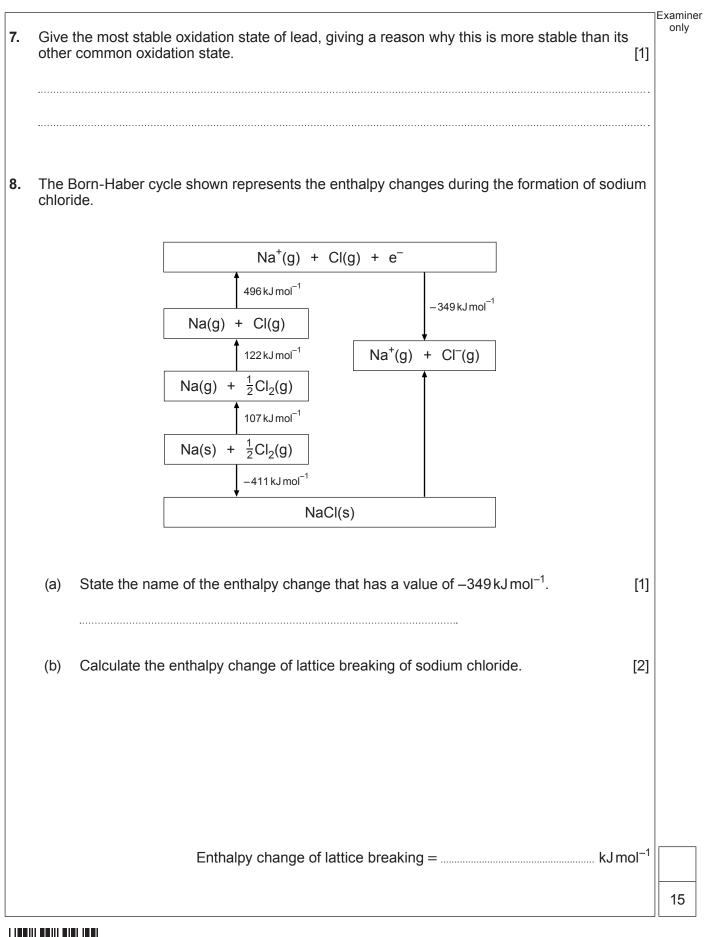
INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 120.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.

The assessment of the quality of extended response (QER) will take place in Q.9(c)(i) and Q.13(a).


A410U101 01

		SE				
		Answei	r all question	S.		
Write th	e electron configurati	ion of a silico	n atom.			[1]
The ele	ctronegativity values	of some eler	nents are liste	ed in the table		
Elemer		AI	С	CI	Н	ο
	negativity value	1.5	2.5	3.0	2.1	3.5
(a) L	abel the bonds below	v with δ + and	δ – to show a	iny dipoles that	at are presen	t. [1]
	C-CI		H—CI	0-0		
(b) G	live a reason why alu					[4]
		minium chior	ide is covale	nt		1
(0) G		iminium chior	ide is covale	nt.		[1]
			ide is covale	nt.		
			ide is covale	nt.		[1]
	dot-and-cross diagra				BeF ₂ .	[1]
					BeF ₂ .	
					BeF ₂ .	
					BeF ₂ .	
					BeF ₂ .	
					BeF ₂ .	
					BeF ₂ .	
					BeF ₂ .	
					BeF ₂ .	
					BeF ₂ .	
	dot-and-cross diagra				BeF ₂ .	

A410U101 03

4.	Explain why the first ionisation energy of nitrogen is higher than that of oxygen.	[2]	Examin only
5.	Sodium hydroxide is a strong base. (a) Calculate the pH of a 0.200 mol dm ⁻³ solution of NaOH at 298K.	[2]	
	pH = (b) Suggest, giving a reason, the pH of a solution of sodium ethanoate.	[1]	
6.	The first ionisation energy of magnesium is 738 kJ mol ⁻¹ . Calculate the frequency of lig would correspond to this energy.	ght that [2]	
	Frequency =	Hz	

Examiner only

SECTION B

Answer **all** questions.

- 9. Cerium is a metallic element in the f-block of the Periodic Table.
 - (a) Cerium has four natural isotopes. The relative isotopic masses and percentage abundances of these isotopes are given in the table.

Isotope	Relative isotopic mass	Percentage abundance
¹³⁶ Ce	135.9	0.19
¹³⁸ Ce	137.9	0.25
¹⁴⁰ Ce	139.9	88.45
¹⁴² Ce	141.9	11.11

- (i) State what is meant by the term 'relative isotopic mass'.
- (ii) Calculate the relative atomic mass of cerium, giving your answer to **four** significant figures. You **must** show your method. [3]

[1]

139Ce electron capture 140 days 143Ce β ⁻ emission 33 hours 144Ce β ⁻ emission 280 days (i) Identify the isotopes produced from ¹³⁴ Ce and ¹⁴³ Ce in their radioactive decay processes. Decay of ¹³⁴ Ce Element symbol Mass number	139Ce electron capture 140 days 143Ce β ⁻ emission 33 hours 144Ce β ⁻ emission 280 days i) Identify the isotopes produced from ¹³⁴ Ce and ¹⁴³ Ce in their radioactive decay processes. [2 Decay of ¹³⁴ Ce Element symbol Mass number [2 Decay of ¹³⁴ Ce Element symbol Mass number [3 One method of measuring the half-life of isotopes with half-lives of a few hours to a few days is to take a sample of known composition and record low resolution mass spectra at regular intervals to measure the height of the peaks of each mass.	1 ³⁹ Ce electron capture 140 days 1 ⁴³ Ce β ⁻ emission 33 hours 1 ⁴⁴ Ce β ⁻ emission 280 days (i) Identify the isotopes produced from ¹³⁴ Ce and ¹⁴³ Ce in their radioactive decay processes. [2 Decay of ¹³⁴ Ce Element symbol Mass number [2 Decay of ¹⁴³ Ce Element symbol Mass number [3 (ii) One method of measuring the half-life of isotopes with half-lives of a few hours to a few days is to take a sample of known composition and record low resolution mass spectra at regular intervals to measure the height of the peaks of each mass.		Radioisotope of cerium	Type of decay	Half-life
¹⁴³ Ce β ⁻ emission 33 hours 1 ⁴⁴ Ce β ⁻ emission 280 days (i) Identify the isotopes produced from ¹³⁴ Ce and ¹⁴³ Ce in their radioactive decay processes. Decay of ¹³⁴ Ce Element symbol Mass number Decay of ¹³⁴ Ce Element symbol Mass number Decay of ¹⁴³ Ce Mass number (ii) One method of measuring the half-life of isotopes with half-lives of a few hours a few days is to take a sample of known composition and record low resolution mass spectra at regular intervals to measure the height of the peaks of each	¹⁴³ Ce β ⁻ emission 33 hours 1 ⁴⁴ Ce β ⁻ emission 280 days i) Identify the isotopes produced from ¹³⁴ Ce and ¹⁴³ Ce in their radioactive decay processes. [2] Decay of ¹³⁴ Ce Element symbol Mass number Decay of ¹⁴³ Ce Element symbol Mass number Decay of ¹⁴³ Ce Image: Comparison of the process of the proces	¹⁴³ Ce β ⁻ emission 33 hours 1 ⁴⁴ Ce β ⁻ emission 280 days (i) Identify the isotopes produced from ¹³⁴ Ce and ¹⁴³ Ce in their radioactive decay processes. [2 Decay of ¹³⁴ Ce Element symbol Mass number Decay of ¹⁴³ Ce Element symbol Mass number Decay of ¹⁴³ Ce Kass number [3 (ii) One method of measuring the half-life of isotopes with half-lives of a few hours to a few days is to take a sample of known composition and record low resolution mass spectra at regular intervals to measure the height of the peaks of each mass. Suggest why this method would not be suitable for any of these isotopes. [2		¹³⁴ Ce	electron capture	3 days
144 Ce β ⁻ emission 280 days (i) Identify the isotopes produced from ¹³⁴ Ce and ¹⁴³ Ce in their radioactive decay processes. Decay of ¹³⁴ Ce Decay of ¹³⁴ Ce Element symbol Mass number Decay of ¹⁴³ Ce Element symbol Mass number Decay of ¹⁴³ Ce Mass number (ii) One method of measuring the half-life of isotopes with half-lives of a few hours to a few days is to take a sample of known composition and record low resolution mass spectra at regular intervals to measure the height of the peaks of each	144 Ce β ⁻ emission 280 days i) Identify the isotopes produced from ¹³⁴ Ce and ¹⁴³ Ce in their radioactive decay processes. [2] Decay of ¹³⁴ Ce Element symbol Mass number Decay of ¹⁴³ Ce Element symbol Mass number Decay of ¹⁴³ Ce Image: Comparison of the process of the proces of the process of th	144Ce β ⁻ emission 280 days (i) Identify the isotopes produced from ¹³⁴ Ce and ¹⁴³ Ce in their radioactive decay processes. [2] Decay of ¹³⁴ Ce [2] Element symbol Mass number Decay of ¹⁴³ Ce [2] Element symbol Mass number Decay of ¹⁴³ Ce [3] Element symbol Mass number (ii) One method of measuring the half-life of isotopes with half-lives of a few hours to a few days is to take a sample of known composition and record low resolution mass spectra at regular intervals to measure the height of the peaks of each mass. Suggest why this method would not be suitable for any of these isotopes. [2]		¹³⁹ Ce	electron capture	140 days
 (i) Identify the isotopes produced from ¹³⁴Ce and ¹⁴³Ce in their radioactive decay processes. Decay of ¹³⁴Ce Element symbol	 i) Identify the isotopes produced from ¹³⁴Ce and ¹⁴³Ce in their radioactive decay processes. Decay of ¹³⁴Ce Element symbol	 (i) Identify the isotopes produced from ¹³⁴Ce and ¹⁴³Ce in their radioactive decay processes. [2] Decay of ¹³⁴Ce Element symbol		¹⁴³ Ce	β^- emission	33 hours
processes. Decay of ¹³⁴ Ce Element symbol Mass number Decay of ¹⁴³ Ce Element symbol Mass number	processes. [2 Decay of ¹³⁴ Ce Element symbol Mass number Decay of ¹⁴³ Ce Element symbol Mass number i) One method of measuring the half-life of isotopes with half-lives of a few hours to a few days is to take a sample of known composition and record low resolution mass spectra at regular intervals to measure the height of the peaks of each mass.	processes. [2 Decay of ¹³⁴ Ce Element symbol Mass number Decay of ¹⁴³ Ce Element symbol Mass number [ii) One method of measuring the half-life of isotopes with half-lives of a few hours to a few days is to take a sample of known composition and record low resolution mass spectra at regular intervals to measure the height of the peaks of each mass. Suggest why this method would not be suitable for any of these isotopes. [2		¹⁴⁴ Ce	β^- emission	280 days
 (ii) One method of measuring the half-life of isotopes with half-lives of a few hours a few days is to take a sample of known composition and record low resolution mass spectra at regular intervals to measure the height of the peaks of each 	 Decay of ¹⁴³Ce Element symbol	 Decay of ¹⁴³Ce Element symbol Mass number (ii) One method of measuring the half-life of isotopes with half-lives of a few hours to a few days is to take a sample of known composition and record low resolution mass spectra at regular intervals to measure the height of the peaks of each mass. Suggest why this method would not be suitable for any of these isotopes. [2] 	(i)	processes.		[2
 (ii) One method of measuring the half-life of isotopes with half-lives of a few hours a few days is to take a sample of known composition and record low resolution mass spectra at regular intervals to measure the height of the peaks of each 	 Element symbol Mass number One method of measuring the half-life of isotopes with half-lives of a few hours to a few days is to take a sample of known composition and record low resolution mass spectra at regular intervals to measure the height of the peaks of each mass. 	 (ii) One method of measuring the half-life of isotopes with half-lives of a few hours to a few days is to take a sample of known composition and record low resolution mass spectra at regular intervals to measure the height of the peaks of each mass. Suggest why this method would not be suitable for any of these isotopes. [2] 		Element symbol	Mass number	
(ii) One method of measuring the half-life of isotopes with half-lives of a few hours a few days is to take a sample of known composition and record low resolution mass spectra at regular intervals to measure the height of the peaks of each	i) One method of measuring the half-life of isotopes with half-lives of a few hours to a few days is to take a sample of known composition and record low resolution mass spectra at regular intervals to measure the height of the peaks of each mass.	 (ii) One method of measuring the half-life of isotopes with half-lives of a few hours to a few days is to take a sample of known composition and record low resolution mass spectra at regular intervals to measure the height of the peaks of each mass. Suggest why this method would not be suitable for any of these isotopes. [2] 				
a few days is to take a sample of known composition and record low resolution mass spectra at regular intervals to measure the height of the peaks of each	a few days is to take a sample of known composition and record low resolution mass spectra at regular intervals to measure the height of the peaks of each mass.	a few days is to take a sample of known composition and record low resolution mass spectra at regular intervals to measure the height of the peaks of each mass. Suggest why this method would not be suitable for any of these isotopes. [2		Decay of ¹⁴³ Ce		
Suggest why this method would not be suitable for any of these isotopes				-	Mass number	
Suggest why this method would not be suitable for any of these isotopes.			(ii)	Element symbol One method of measurir a few days is to take a sa mass spectra at regular mass.	ng the half-life of isotopes with ample of known composition a intervals to measure the heigh	half-lives of a few hours to and record low resolution at of the peaks of each
				Element symbol One method of measurin a few days is to take a sa mass spectra at regular mass. Suggest why this method	ng the half-life of isotopes with ample of known composition a intervals to measure the heigh d would not be suitable for any	half-lives of a few hours to ind record low resolution it of the peaks of each of these isotopes. [2
				Element symbol One method of measurin a few days is to take a sa mass spectra at regular mass. Suggest why this method	ng the half-life of isotopes with ample of known composition a intervals to measure the heigh d would not be suitable for any	half-lives of a few hours to ind record low resolution it of the peaks of each of these isotopes. [2

Examiner only

(iii) Another method of measuring the half-life is to measure the level of radioactivity over time.

An initial sample contained a mixture of equal amounts of ^{139}Ce and ^{144}Ce . After a period of storage, the β^- emission due to ^{144}Ce had dropped to 25% of its initial value.

By considering the decay of both isotopes, calculate the percentage of the cerium remaining that is ¹³⁹Ce. [3]

Percentage =%

8

(C)	Ce ⁴⁺ ions can be used as oxidising agents in redox titrations, such as those involving the oxidation of Fe ²⁺ .
	$Ce^{4+}(aq) + Fe^{2+}(aq) \longrightarrow Ce^{3+}(aq) + Fe^{3+}(aq)$
	(i) A titration requires 250 cm^3 of a standard solution of $\text{Ce}(\text{SO}_4)_2$ of concentration 0.200 mol dm ⁻³ .
	Describe how this standard solution could be produced. You should include the mass of $Ce(SO_4)_2$ that would be required. [6 QER]

A410U101 09

		∃Examin
(ii)	A sample of 0.680 g of an iron ore containing $FeCO_3$ as the only iron-containing compound was dissolved in a suitable acid. This was titrated against the standard $Ce^{4+}(aq)$ solution produced in part (i) and it required 22.45 cm ³ of the standard solution for complete reaction.	only
	Calculate the mass of $FeCO_3$ present in the ore sample. [3]]
	Mass of $FeCO_3 = \dots$	9
(iii)	A separate ore contains both FeO and FeCO ₃ .	
	Explain why the method in part (ii) would not be suitable for finding the mass of $FeCO_3$ in this ore and outline a method that would be suitable. [3]]
•••••		

Ce ⁴⁺ ions can be produced in solution by oxidation of Ce ³⁺ ions. Use the data below to identify suitable oxidising agent(s) for this process, giving your [2] $\frac{1}{12} \frac{1}{12} \frac{1}{12}$		
reasoning. [2] $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Ce ⁴⁺ ions can be produced in solution by oxidation of Ce ³⁺	ions.
potential, E^{θ}/V $H_2O_2 + 2H^+ + 2e^- \rightleftharpoons 2H_2O$ +1.78 $Ce^{4+} + e^- \rightleftharpoons Ce^{3+}$ +1.61 $BrO_3^- + 6H^+ + 5e^- \rightleftharpoons \frac{1}{2}Br_2 + 3H_2O$ +1.52	Use the data below to identify suitable oxidising agent(s) fo reasoning.	
$Ce^{4+} + e^{-} \rightleftharpoons Ce^{3+} + 1.61$ BrO ₃ ⁻ + 6H ⁺ + 5e ⁻ $\rightleftharpoons \frac{1}{2}Br_2 + 3H_2O + 1.52$		
$BrO_3^- + 6H^+ + 5e^- \implies \frac{1}{2}Br_2 + 3H_2O$ +1.52	$H_2O_2 + 2H^+ + 2e^- \implies 2H_2O$	+1.78
	$Ce^{4+} + e^- \Longrightarrow Ce^{3+}$	+1.61
$CIO_4^- + 2H^+ + 2e^- \implies CIO_3^- + H_2O$ +1.23	BrO_3^- + $6H^+$ + $5e^ \implies \frac{1}{2}Br_2$ + $3H_2O$	+1.52
	CIO_4^- + $2H^+$ + $2e^ \implies$ CIO_3^- + H_2O	+1.23

A410U101 11

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Thore	
lactic	e are many organic acids produced by living things. These include citric acid in fruit and acid produced during anaerobic respiration.
(a)	A solution of citric acid is found to have a pH of 3.2. Calculate the concentration of H ⁺ ions in this solution. [1]
	Concentration = mol dm ⁻³
(b)	Citric acid is a tribasic acid, represented as H_3 (citrate), as it contains three acidic hydrogen atoms in each molecule.
	It reacts with sodium hydrogencarbonate in an endothermic reaction.
H₂(c	itrate)(aq) + 3NaHCO ₃ (s) ──► Na ₃ (citrate)(aq) + 3H ₂ O(I) + 3CO ₂ (g)

Examiner only

(ii)	A sample of $50.0 \mathrm{cm^3}$ of aqueous citric acid was treated with excess aqueous NaHCO ₃ and the volume and temperature of the carbon dioxide gas produced was measured.	
	A total of 72.2 cm ³ of carbon dioxide was produced at a temperature of 16 °C and 1 atm pressure. Calculate the initial concentration of the aqueous citric acid. [3]	
	Concentration = mol dm ⁻³	

			Examine
	(iii)	In a separate experiment, a student studies the enthalpy change during the reaction between aqueous citric acid and solid sodium hydrogencarbonate, NaHCO ₃ .	only
		He follows the method below.	
		 Measure 50.0 cm³ of citric acid of concentration 0.500 mol dm⁻³ and place in a polystyrene cup with a lid. Place a thermometer with 0.1 °C divisions through the lid of the cup and measure the temperature of the citric acid every 30 seconds for 3 minutes. At 3 minutes add 2.300g of powdered NaHCO₃ and mix thoroughly. Measure the temperature every 30 seconds for a further 5 minutes. Plot a graph of the data and use this to find the maximum temperature change. 	
		 I. Explain why the temperature is measured every 30 seconds for 3 minutes before adding the NaHCO₃. [1] 	
		 II. Explain why the temperature is measured every 30 seconds for 5 minutes after adding the NaHCO₃. 	
		III. Calculate the number of moles of both citric acid and sodium hydrogencarbonate used in the experiment and hence show which is in excess.	
14		© WJEC CBAC Ltd. (A410U10-1)	

IV. The maximum temperature change, ΔT , is found to be –2.3 °C.	Examiner only
Calculate the percentage error in this measurement. [1]
	,
Percentage error = %	D
V. The experiment is repeated using different conditions to produce a larger temperature change. Using 25.0 cm ³ of 0.800 mol dm ⁻³ citric acid solution and excess sodium hydrogencarbonate gives a temperature change of –10.1 °C.	b
Calculate the enthalpy change for the reaction. [3]
$H_3(citrate) + 3NaHCO_3 \longrightarrow Na_3(citrate) + 3H_2O + 3CO_2$	
	101
	A410U101
$\Delta H = \dots kJ \text{mol}^-$	1

(0)	Lacti	c acid is a weak monobasic acid with a K of 1.40 \times 10 ⁻⁴ moldm ⁻³	Examiner only
(C)	(i)	c acid is a weak monobasic acid with a K_a of 1.40×10^{-4} mol dm ⁻³ . Calculate the concentration of a lactic acid solution of pH 2.89. [2	1
			1
		Concentration = mol dm ⁻	3
	(ii)	A mixture of lactic acid and sodium lactate forms a buffer solution.	
		I. State what is meant by a 'buffer solution'. [1]
		 II. Calculate the pH of a buffer solution formed by mixing 100 cm³ of 0.20 mol dm⁻³ aqueous lactic acid with 50 cm³ of 0.20 mol dm⁻³ aqueous sodium lactate.]
		pH =	
			21
16		© WJEC CBAC Ltd. (A410U10-1)	

BLANK PAGE

17

PLEASE DO NOT WRITE ON THIS PAGE

Examiner

11.	Seawater contains a wide range of compounds formed from atoms of many different elements.	only
• • •	The ten most abundant elements are shown in the table.	

Element	Abundance/gdm ⁻³
oxygen	857
hydrogen	108
chlorine	19.4
sodium	10.8
magnesium	1.29
sulfur	0.905
calcium	0.412
potassium	0.399
bromine	0.0673
carbon	0.0281

Seawater contains a range of oxyanions such as carbonate and sulfate which contain a small proportion of the oxygen atoms present. (a)

Assuming all hydrogen atoms present are contained in water molecules, use the data in the table to calculate the percentage of the oxygen atoms that are present in water molecules. [2]

Percentage of oxygen atoms = %

(b)	Flam	ne tests can identify many of the metal ions present in seawater.	Examine only
	(i)	Give the colours expected in flame tests for each of the metal ions present.	[2]
		sodium	
		magnesium	
		calcium	
		potassium	
	(ii)	Suggest why flame tests are not always effective for identifying the metal ions present in mixtures like seawater.	[1]
(C)		possible to form crystals of sodium chloride by evaporation of seawater. nplete and label the diagram below to show the crystal structure of sodium chloric	de. [2]
19		© WJEC CBAC Ltd. (A410U10-1) Turn o	ver.

]E
(d)	ions	poration of seawater can also form hydrated salts, $MX_n aH_2O$, that include comported from the elements listed in the table. One such salt has several different ated forms, including $a=6$, $a=4$ and $a=2$.	mon
		mple of $MX_n.6H_2O$ is heated and loses 16.44% of its initial mass as it forms .4H ₂ O. Identify MX_n . You must show your working.	[3]
	lden	tity of salt	
(e)		bling chlorine gas through seawater causes an orange colouration to appear as Il amounts of Br ₂ (aq) are formed.	;
(e)			[1]
(e)	sma	Il amounts of Br ₂ (aq) are formed.	[1]
(e)	sma (i)	Il amounts of Br ₂ (aq) are formed. Write an ionic equation for this process. Excess chlorine is bubbled through a sample of seawater and 0.0673 g dm ⁻³ of	[1] of
(e)	sma (i)	Il amounts of Br ₂ (aq) are formed. Write an ionic equation for this process. Excess chlorine is bubbled through a sample of seawater and 0.0673 g dm ⁻³ of	[1] of
(e)	sma (i)	Il amounts of Br ₂ (aq) are formed. Write an ionic equation for this process. Excess chlorine is bubbled through a sample of seawater and 0.0673 g dm ⁻³ of	[1] of [1]
(e)	sma (i)	Il amounts of $Br_2(aq)$ are formed. Write an ionic equation for this process. Excess chlorine is bubbled through a sample of seawater and 0.0673 g dm ⁻³ of Br_2 is produced. Find the concentration of $Br_2(aq)$ in mol dm ⁻³ .	[1] of [1]
(e)	sma (i)	Il amounts of $Br_2(aq)$ are formed. Write an ionic equation for this process. Excess chlorine is bubbled through a sample of seawater and 0.0673 g dm ⁻³ of Br_2 is produced. Find the concentration of $Br_2(aq)$ in mol dm ⁻³ .	[1] of [1]

(f)	The carbon present in seawater exists as dissolved carbon dioxide, HCO_3^{-} ions and CO_3^{2-} ions. There are complex equilibria between these species, which can be simplified as follows.	Examiner only
	$CO_2(g) \longrightarrow CO_2(aq)$	
	$CO_2(aq) + H_2O(I) \implies H^+(aq) + HCO_3^-(aq)$	
	$HCO_3^{-}(aq) \longrightarrow H^{+}(aq) + CO_3^{2-}(aq)$	
	These equilibria are important when discussing the effects of increased atmospheric carbon dioxide and climate change.	
	More carbon dioxide in the atmosphere can lead to a decrease in the pH of the oceans. This can cause problems for marine creatures that form shells out of carbonate minerals. Use the equilibria to explain why this is so. [3]	
·····		
<u>.</u>		
·····		
<u>.</u>		
		15

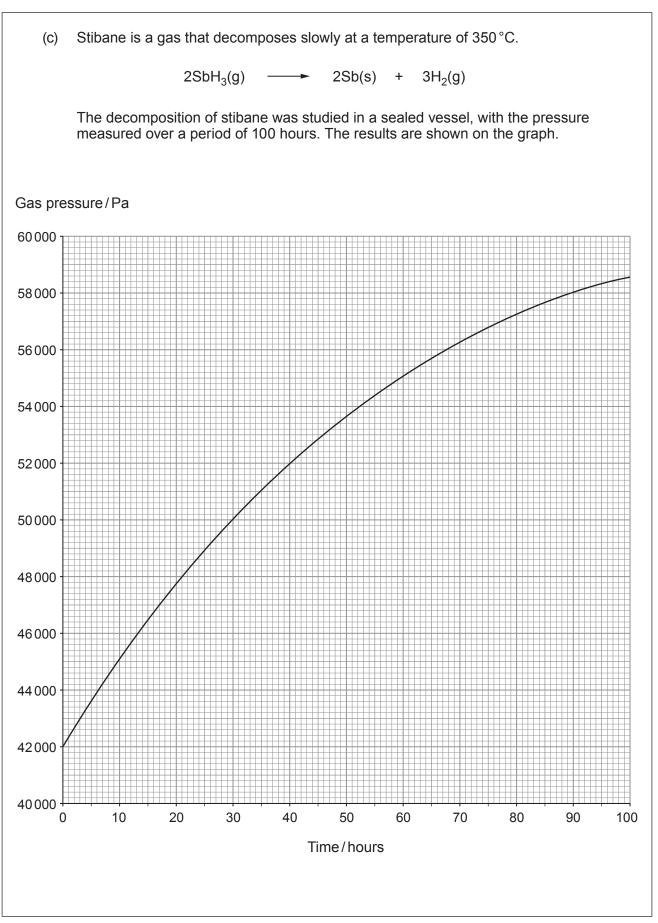
A transition metal compound [ML _n]X ₂ was an made.	nalysed and the following observations were
Crystal structure	The compound contains an octahedral transition metal complex with anions X^- formed from single atoms.
Addition of sodium hydroxide solution and warming	A pungent-smelling gas is released that turns moist red litmus paper blue. A precipitate with an unfamiliar colour forms when the solution cools. This precipitate does not dissolve in excess sodium hydroxide.
Addition of concentrated sulfuric acid	Coloured fumes are released with a smell of rotten eggs.
Addition of ligand $H_2NCH_2CH_2NH_2$, represented by the abbreviation 'en'	A new complex is formed with formula $[M(en)_3]X_2$. The mass of this compound is 18.82% greater than the original compound.

(a) State which anions, X⁻, are present in the compound, giving a reason for your answer. [2]

.....

b)	(i)	compound forms a coloured precipitate when sodium hydroxide is added. Explain why transition metals form coloured compounds.	[3]
	······		
	.		
	(ii)	The precipitate does not dissolve when excess sodium hydroxide is added. Sta what information this provides about metal M.	ite [1]
	.		
c)	State	e which ligands, L, are present in the complex ion, giving a reason for your answ	er. [2]
d)	State	e the value of n, the number of ligands present in the complex.	[1]

(e) Use the reaction with H ₂ NCH ₂ CH ₂ NH ₂ to calculate <i>M</i> _r for [ML _n]X ₂ and hence find the identity of the transition metal, M. You must show your working. [3] <i>M_r</i> =			Examine
$M_r =$ M is	(e)		
M is		You must show your working.	3]
M is			
M is		<i>M</i> ₋ =	
(f) Write the formula of the complex cation, [ML _n] ^{a+} . [1]			
(f) Write the formula of the complex cation, [ML _n] ^{a+} . [1]			
(f) Write the formula of the complex cation, [ML _n] ^{a+} . [1]			
		M IS	
	(f)	Write the formula of the complex cation, $[ML_n]^{a+}$. [1]



(g)	The on h	metal hydroxid eating in a sim	e produceo ilar manne	d on reaction r to the dec	on wi	th sodium hyd osition of Gro	droxide, M(OH) ₂ , decom _j oup 2 hydroxides.	ooses	Examiner only
	(i)	Write an equa	ation for th	e thermal c	lecor	nposition of N	Л(ОН) ₂ .	[1]	
	(ii) 	Give the tren	d in the the	ermal stabil	ity of	the hydroxid	es in Group 2.	[1]	
	 (iii)	The Group 2 Calculate the					n heating. ompose MgCO ₃ .	[2]	
		MgCO ₃ (s)		MgO(s)	+	CO ₂ (g)	$\Delta H^{\theta} = 117 \text{kJ} \text{mol}^{-1}$		
							$\Delta S^{\theta} = 175 \mathrm{J} \mathrm{K}^{-1} \mathrm{mol}^{-1}$		
						Temperatu	re =	K	17
25		© WJEC (CBAC Ltd.	(A410U10	0-1)		Turn	over.	

Compound	Formula	Boiling temperature / °C	Solubility in water / gdm ⁻³	
ammonia	NH ₃	-33	470	
phosphane	PH ₃	-83	0.312	
arsane	AsH ₃	-63	0.710	
stibane	SbH ₃	-17	4.24	
a) Identify and ex		s seen in these physical pr		[6 QER]
				······

(b) Use VSEPR theory to predict the shape of the PH ₃ molecule, giving reasons for your answer.			Exar
	(b)	Use VSEPR theory to predict the shape of the PH_3 molecule, giving reasons for y answer.	/our
	•••••		
	••••••		
	•••••		
	•••••		
₩₩₩			
₩₩₩			
		1881	
27 © WJEC CBAC Ltd. (A410U10-1) Turn over.	27		

 		Examir
(i)	The initial pressure in the vessel was 42000 Pa. Calculate the pressure in the vessel when all the stibane had decomposed.	[2]
	Pressure =	
(ii)	Calculate the initial rate of change of pressure in Pahr ⁻¹ .	[2]
	Rate of change of pressure = Pa	hr ⁻¹
(iii)	Use the initial pressure and your answer to part (i) to calculate the pressure in vessel when half the stibane had decomposed.	the
	Use this and the graph to show that the reaction is first order with respect to stibane.	[4]
	Pressure when half the stibane had decomposed =	. Pa
•••••		
•••••		
]

		Examiner
(d)	Ammonia is produced industrially using the Haber process.	only
	$N_2(g)$ + $3H_2(g)$ \implies $2NH_3(g)$	
	The reaction traditionally used iron-based catalysts which reduce the activation energy of the reaction to $101.4 \text{ kJ mol}^{-1}$. Newer catalysts have been developed using ruthenium which reduce the activation energy further to 64.0 kJ mol^{-1} .	
	(i) These are examples of heterogeneous catalysts.	
	State what is meant by a 'heterogeneous' catalyst. [1]	
	 State, giving a reason, the effect of changing the catalyst on the position of this equilibrium. 	
30	© WJEC CBAC Ltd. (A410U10-1)	

		Examiner
(iii)	The Haber process typically uses a temperature of 500 °C.	only
	Replacing the iron-based catalyst with a newer ruthenium-based catalyst increases the initial rate of reaction by a factor, \mathbf{f} , at this temperature.	
	Use the Arrhenius equation to calculate the value of f .	
	You may assume that the frequency factor in both cases is the same.	[3]
	f =	

[4]

27

(e)	When water is added to gaseous phosphane no visible reaction occurs. However, studies using isotopes of hydrogen have shown that hydrogen atoms are exchanged between the phosphane and water.	Examiner only
	The following gas phase equilibrium occurs, where D represents deuterium, a hydrogen isotope with a mass number of 2.	

 $PH_2D(g) + H_2O(g) \implies PH_3(g) + HDO(g)$

A sealed vessel of volume 500 cm³ contained 1.00×10^{-3} mol of PH₂D(g). A sample of 4.90×10^{-4} mol of H₂O(g) was added and the mixture allowed to reach equilibrium.

The mass spectrum of the equilibrium mixture shows that 36% of the phosphorus is present in PH_3 and 64% of the phosphorus is present in PH_2D .

Calculate the value of the equilibrium constant $K_{\rm c}$ for this reaction.

K_c =

END OF PAPER

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

GCE A LEVEL

A410U10-1A

MONDAY, 13 JUNE 2022 – MORNING

CHEMISTRY – A level component 1 Data Booklet

Avogadro constant
molar gas constant
molar gas volume at 273 K and 1 atm
molar gas volume at 298 K and 1 atm
Planck constant
speed of light
density of water
specific heat capacity of water
ionic product of water at 298K
fundamental electronic charge

$N_{\mathcal{A}}$	=	$6.02 \times 10^{23} \text{ mol}^{-1}$
		8.31 Jmol ⁻¹ K ⁻¹
V_m	=	22.4 $dm^3 mol^{-1}$
V_m	=	24.5 dm ³ mol ⁻¹
		$6.63 \times 10^{-34} \mathrm{Js}$
С	=	$3.00 \times 10^8 \mathrm{ms^{-1}}$
		1.00 g cm ⁻³
		4.18 Jg ⁻¹ K ⁻¹
		$1.00 \times 10^{-14} \text{ mol}^2 \text{dm}^{-6}$
e	=	1.60 × 10 ^{−19} C

temperature (K) = temperature (°C) + 273

 $1 dm^3 = 1000 cm^3$ $1 m^3 = 1000 dm^3$ 1 tonne = 1000 kg1 atm = $1.01 \times 10^5 \text{ Pa}$

Multiple	Prefix	Symbol	Multiple	Prefix	Symbol
10 ⁻⁹	nano	n	10 ³	kilo	k
10 ⁻⁶	micro	μ	10 ⁶	mega	М
10 ⁻³	milli	m	10 ⁹	giga	G

Infrared absorption values

Bond	Wavenumber/cm ⁻¹
C — Br	500 to 600
C - CI	650 to 800
C-O	1000 to 1300
C = C	1620 to 1670
C=0	1650 to 1750
$C \equiv N$	2100 to 2250
C-H	2800 to 3100
O-H (carboxylic acid)	2500 to 3200 (very broad)
O—H (alcohol / phenol)	3200 to 3550 (broad)
N - H	3300 to 3500

13 C NMR chemical shifts relative to TMS = 0

Type of carbon	Chemical shift, δ (ppm)
$-\stackrel{ }{\overset{ }{\operatorname{c}}}\stackrel{ }{\overset{-}{\operatorname{c}}}\stackrel{ }{\overset{-}{\operatorname{c}}}$	5 to 40
R — C — CI or Br	10 to 70
$\begin{array}{c} R - C - \overset{ }{C} - \overset{ }{C} \\ \parallel & \parallel \\ O \end{array}$	20 to 50
$\mathbf{R} - \mathbf{C} - \mathbf{N}$	25 to 60
	50 to 90
)⊂=c(90 to 150
$R-C\equiv N$	110 to 125
\bigcirc	110 to 160
R — C — (carboxylic acid / es O	ster) 160 to 185
R — C — (aldehyde / ketone) O	190 to 220

¹H NMR chemical shifts relative to TMS = 0

Type of proton	Chemical shift, δ (ppm)
$-CH_3$	0.1 to 2.0
$R-CH_3$	0.9
R-CH ₂ -R	1.3
$CH_3 - C \equiv N$	2.0
CH ₃ -C	2.0 to 2.5
-CH2-C	2.0 to 3.0
	2.2 to 2.3
HC-Cl or HC-Br	3.1 to 4.3
HC-O	3.3 to 4.3
R—OH	4.5 *
-C = CH	4.5 to 6.3
-c = CH - CO	5.8 to 6.5
CH=C	6.5 to 7.5
∕⊖∕−н	6.5 to 8.0
О ОН	7.0 *
R-C H R-C OH	9.8 *
R-C OH	11.0 *

*variable figure dependent on concentration and solvent

THE PERIODIC TABLE

Krypton 36 Xenon 54 Radon 86 4.00 Helium 20.2 **Neon** Argon 18 83.8 Kr ж^{д31} (222) Rn 0 2 Bromine 35 Chlorine Fluorine 9 Astatine 85 lodine 53 79.9 Br П 19.0 ^{35.5} At At Lawrencium 103 127 Lutetium 71 1 (257) Lr 175 Lu Oxygen 8 Polonium 84 Selenium Tellurium 32.1 Sulfur 16 0.^{16.}0 79.0 Se 128 Te Po (210) Ytterbium 70 Nobelium 102 34 52 (254) No ശ 473 Υb p block Arsenic 33 Bismuth 83 Nitrogen 7 Phosphorus Mendelevium 101 Antimonv Thulium 69 **Р** 31.0 74.9 **As** ¹²² Sb ⁴.5 209 Bi (256) Md 169 Tm 2 S 5 Carbon 6 Germanium Fermium 100 Silicon 72.6 Ge Erbium 68 Lead 82 (253) Fm 50 Tin 50 Tin 50 C^{12.0} 28.1 Si 207 Pb 4 32 167 Er 4 Aluminium 13 Gallium Indium Thallium Einsteinium 99 10.8 Boron 5 Holmium 67 69.7 Ga 204 TI (254) Es 27.0 AI **h** 15 165 Ho 49 က 3 õ Dysprosium 66 Cadmium Californium 98 Mercury 80 65.4 Zn 30 112 Cd 201 Hg (251) Cf 48 D 0 Copper 29 Berkelium 97 108 Ag Silver Terbium 65 63.5 Cu Gold 79 (245) **Bk** 197 Au 159 Tb 47 f block Nickel 28 195 Pt Platinum 78 Palladium Gadolinium 64 Curium 96 58.7 Ni 106 Pd (247) Cm 46 157 Gd Cobalt 27 Rhodium Iridium 77 Americium 95 Europium 63 58.9 Co 203 Rh (243) Am 192 **Ir** (153) Eu 45 Osmium 76 Samarium 62 Plutonium 94 Ruthenium 55.8 Fe 190 Os lron 26 ⁵⁰ (242) Pu 150 Sm atomic number 4 4 Group relative atomic mass d block Key Manganese 25 Rhenium 75 Neptunium 93 echnetium Promethium 54.9 Mn (147) Pm (237) Np ^{98.9} Tc 186 Re 43 Ar Symbol 9 Name Z – Chromium 24 Uranium 92 Aolybdenum Tungsten 74 Neodymium 95.9 Mo 52.0 Cr 144 Nd ¹⁸4 ∪ 238 00 42 Protactinium 91 Praseodymium 59 Tantalum 73 /anadium Viobium <0.9 92.9 Nb (231) Pa ∄ ∄ ĘΖ 23 4 Zirconium 40 **Fitanium** Hafnium 72 Thorium 90 Cerium 91.2 Zr 040 040 47.9 Ti 179 Hf 232 Th 58 22 (227) AC * Lanthanum 57 Yttrium Actinium 89 Lanthanoid Scandium elements Actinoid 45.0 Sc elements 88.9 139 La 39 5 Radium 88 Magnesium 12 Calcium Strontium Barium Beryllium 24.3 Mg Ca Ca (226) Ra 87.6 Sr 137 Ba 9.01 Be 2 56 20 38 s block Caesium 55 85.5 Rb Rubidium 37 Hydrogen 1 Sodium (223) Fr Francium 87 Lithium 3 Potassium 23.0 **Na** 133 Cs <u>1</u>0 6.94 Li ¥.39.1 19 ÷ Period ഹ 2 ശ ~ က 4

PMT

© WJEC CBAC Ltd.

(A410U10-1A)